МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

заведующий кафедрой биофизики и биотехнологии

Артюхов В.Л

07.06.2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.14 Биофизика

- **1.Код и наименование направления подготовки/специальности:** 33.05.01 Фармация
- 2. Профиль подготовки/специализация Фармация
- 3. Квалификация выпускника: провизор
- 4. Форма обучения: очная
- **5. Кафедра, отвечающая за реализацию дисциплины:** биофизики и биотехнологии
- **6. Составители программы**: Башарина Ольга Владимировна, кандидат биологических наук, доцент,

Артюхов Валерий Григорьевич, доктор биологических наук, профессор,

7. **Рекомендована:** НМС медико-биологического факультета, протокол №5 от 01.06.2020

9. Цели и задачи учебной дисциплины:

Целью курса «Биофизика» является последовательное изложение основ биофизики как самостоятельной науки, имеющей свой предмет и методы исследования, собственную теоретическую концептуальную базу и области приложения.

Задачи общего курса состоят в выявлении единства в многообразии биологических явлений путем раскрытия общих молекулярных механизмов взаимодействий, лежащих в основе биологических процессов. Конкретные задачи биофизики — понимание механизма биологических явлений, расшифровка первичных молекулярных процессов, изучение теоретических основ предмета, получение практических навыков работы, освоение студентами биофизических методов анализа; способность решать определенные исследовательские задачи, устанавливать причинно-следственные связи в функционировании биообъектов.

10. Место учебной дисциплины в структуре ООП:

Дисциплина относится к блоку базовых дисциплин (модулей) (Б.1), обязательная часть (Б.1.О.).

11. Планируемые результаты обучения по дисциплине / модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

Код	Название компетенции	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
ОПК-1	Способен использовать основные биологические, физико-химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов	ОПК-1.2	Применяет основные физико- химические и химические методы анализа для разработки, исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов	знать: биологическую и биофизические понятия, теоретические основы биофизики, общие молекулярные механизмы взаимодействий, лежащие в основе биологических (в т.ч. физиологических) процессов и явлений, принципы биофизических методов исследования уметь: использовать фундаментальные биофизические представления в сфере профессиональной деятельности для решения новых задач; применять биофизические методы анализа для оценки качества лекарственных препаратов владеть (иметь навык(и)): основными методами биофизического анализа, методами самостоятельной постановки экспериментов, способностью к анализу и оценке достоверности

12. Объем дисциплины в зачетных единицах/час.(в соответствии с учебным планом) — 3 / 108.

Форма промежуточной аттестации – зачет

13. Трудоемкость по видам учебной работы

Вид учебной работы		Трудоемкость (часы)			
		D	По семестрам		
		Всего	№ сем. 3	№ сем.	
Аудиторные занятия		50	50		
в том числе:	лекции	16	16		
Г	практические				
ла	абораторные	34	34		
Самостоятел	тьная работа	58	58		
Форма промежуточной аттестации					
зачет					
	Итого:	108	108		

13.1. Содержание дисциплины:

N п/п			Реализация
	Наимонования		раздела
	Наименование	Сопоружние реалопа писниппин	дисциплины с
	раздела	Содержание раздела дисциплины	помощью
	дисциплины		онлайн-курса,
			ЭУМК
		1. Лекции	
1.1	Предмет и задачи	Предмет и задачи биофизики. Краткая	Онлайн-курс
	биофизики.	история развития биофизики. Проблемы	«Биофизика»
	Проблемы	современной биофизики. Значение	ВГУ" <u>https://edu.v</u>
	современной	биофизики. Связь биофизики с медициной и	su.ru/course/view.
	биофизики	фармацией	php?id=9694
1.2	Молекулярная	Молекулярная биофизика. Биофизика	
	биофизика	белка и нуклеиновых кислот. Уровни	
		структурной организации белков. Фолдинг и	
		денатурация белков. Конформационная	
		подвижность (динамика) белков.	
		Структура нуклеиновых кислот. Модель	
		Уотсона – Крика, другие возможные формы	
		днк.	
		Силы стабилизации структуры	
		биополимеров. Роль воды в формировании	
		структуры биомолекул	
1.3	Биофизика	Биофизика мембран. Структура и функции	
	мембран.	биологических мембран. Современная	
	Структура и	модель мембраны. Фазовые переходы и	
	функции	микровязкость липидного бислоя.	
	биологических	Пероксидное окисление липидов. Динамика	
	мембран	биомембран.	
		Модельные липидные мембраны.	
		Применение липосом при изготовлении	
		лекарств.	
		Транспорт веществ (в том числе	
		лекарственных препаратов) через	

		биологические мембраны. Механизмы пассивного транспорта. Пассивный транспорт: диффузия, осмос, фильтрация, пиноцитоз, фагоцитоз. Активный транспорт веществ через мембрану. Механизм работы ионных насосов. Вторично активный транспорт. Электрические мембранные потенциалы, генерация потенциала покоя и потенциала возбуждения. Виды мембранных рецепторов. Механизм передачи сигнала в клетку.	
1.4	Квантовая биофизика. Оптические методы анализа биосистем. Фотобиология	Квантовая биофизика. Энергетические уровни молекул. Взаимодействие квантов света с молекулами. Условия поглощения кванта света. Электронные переходы при поглощении света в биомолекулах. Качественные и количественные показатели поглощения света. Спектральные свойства некоторых биомолекул. Люминесценция. Флуоресценция и фосфоресценция. Применение люминесцентного анализа в биологии и фармации. Фотобиологические процессы и их стадии. Определение концентрации исследуемого вещества в растворе спектрофотометрическим методом. Определение удельного коэффициента поглощения исследуемого вещества.	
1.5	Кинетика и термодинамика биологических процессов	Термодинамика биологических процессов, основные понятия. І и ІІ начала термодинамики. Энтропия. Закон Гесса. Организм как открытая термодинамическая система. Стационарное состояние биологических систем. Уравнение Пригожина для открытой системы.	
1.6	-	Механизмы поглощения энергии ионизирующих излучений. Дозиметрия. Взаимодействие разных видов ионизирующего излучения с атомами и молекулами вещества	
		е предусмотрены ораторные занятия	
3.1	Предмет и задачи биофизики.	Техника безопасности при работе с электрооборудованием, с химреактивами. Правила оказания первой помощи. Техника работы в лаборатории, знакомство со вспомогательным оборудованием.	Онлайн-курс «Биофизика» <i>BГУ</i> " <u>https://edu.v</u> <u>su.ru/course/view.</u> <u>php?id=9694</u>
3.2	Молекулярная	Спектрофотометрия. Спектральные свойства	

	биофизика	белков и нуклеиновых кислот.		
	,	Методы изучения конформационного		
		состояния биомолекул. Исследование		
		денатурации белка с помощью		
		спектрофотометрического анализа		
3.4	Биофизика	Определение активности некоторых		
	мембран	мембранных ферментов.		
3.5	Квантовая	Качественные и количественные показатели		
	биофизика.	поглощения света. Определение		
	Оптические	концентрации заданного вещества в		
	методы анализа	растворе с помощью		
	биосистем.	спектрофотометрического метода анализа.		
	Фотобиология	Решение задач по теме		
		Рефрактометрия. Знакомство с работой и		
		принципом действия рефрактометра RL-1.		
		Определение показателя преломления		
		некоторых веществ и биологических систем.		
		Расчет концентрации некоторых веществ по		
		показателю преломления. Решение задач по		
		теме.		
3.6	Радиационная	Использование радиометрического метода		
	биофизика	для определения активности радионуклидов.		
		Определение β-радиоактивности препарата		
		с заданной степенью точности.		
		Измерение активности радиоактивного		
		препарата в зависимости от геометрических		
		условий счета.		

13.2. Разделы дисциплины и виды занятий:

	ional adjusta Ariodinima in Engli communi						
Nº	Наименование раздела	Виды занятий (часов)					
п/	•	Лекции	Практиче	Лаборато	Самостоятель	Всего	
П	дисциплины	лекции	ские	рные	ная работа	bcero	
1	Предмет и задачи биофизики. Проблемы современной биофизики.	2	-	2	8	12	
2	Молекулярная биофизика.	2	-	8-	10	20	
3	Биофизика мембран. Структура и функции биологических мембран.	4	-	-	10	14	
4	Квантовая биофизика. Фотобиология	2	-	16	10	28	
5	Кинетика и термодинамика биологических процессов	6	-	-	10	16	
6	Радиационная биофизика		-	8	10	18	
	Итого	16	-	34	58	108	

14. Методические указания для обучающихся по освоению дисциплины

Самостоятельная работа студентов осуществляется с использованием рекомендованных учебников и учебных пособий в ходе подготовки к практическим и лабораторным занятиям. Студенты знакомятся с теоретическим материалом в процессе лекционного курса, самостоятельно прорабатывают и усваивают теоретические знания с использованием рекомендуемой учебной литературы и учебно-методических пособий, согласно указанному списку (п.15).

На лабораторных занятиях студенты выполняют учебно-исследовательскую работу. В ходе лабораторных работ студенты приобретают навыки обращения с биологическими объектами для определения их биофизических характеристик, умение определять эти характеристики (оптическая плотность, показатель преломления, вязкость, радиоактивность и др.) и анализировать полученные результаты. В конце лабораторного занятия результаты и материалы учебноисследовательской работы докладываются преподавателю, при необходимости обсуждаются в группе (отчет о лабораторном занятии). В случаях пропуска лабораторного занятия ПО каким-либо причинам студент обязан его самостоятельно выполнить ПОД контролем преподавателя во время индивидуальных консультаций.

Освоение содержания дисциплины осуществляется с использованием дистанционных образовательных технологий (ДОТ) — электронного учебного онлайн курса «Биофизика», расположенного по адресу: https://edu.vsu.ru/course/view.php?id=9694 на портале «Электронный университет ВГУ». Перед началом учебных занятий обучающийся должен:

- 1. Проверить наличие доступа к курсу. В случае выявления проблем своевременно обратиться к преподавателю или в службу технической поддержки.
- 2. Изучить интерфейс курса, знать способы взаимодействия с преподавателем в рамках ЭУК: сообщение на форуме, отправка личного сообщения, чат.
- 3. Ознакомиться с целью и задачами дисциплины, перечнем формируемых компетенций и результатов обучения, программой дисциплины, календарным планом, траекторией освоения дисциплины, комплексом вопросов и требований для промежуточной аттестации.
- 4. Ознакомиться с перечнем основной и дополнительной литературы, а также списком электронных образовательных ресурсов, необходимых для освоения дисциплины. Получить доступ к электронным библиотечным системам, на которые оформлена подписка ФГБОУ ВО «ВГУ».

Текущая аттестация обеспечивает проверку освоения учебного материала, навыков в процессе приобретения знаний, умений И аудиторной самостоятельной работы студентов, формирования общепрофессиональных компетенций (ОПК-1.2). Текущая аттестация по дисциплине «Биофизика» проводится в виде письменного задания (текущая аттестация по темам: «Предмет и задачи биофизики Проблемы современной биофизики», «Молекулярная биофизика» и «Биофизика мембран. Структура и функции биологических мембран» и включает в себя регулярные отчеты студентов по лабораторным работам. При подготовке к докладам студенты изучают и конспектируют рекомендуемую преподавателем учебную литературу, самостоятельно осваивают понятийный аппарат. Планирование и организация проверки в ходе текущих аттестаций знаний, умений и навыков осуществляется в соответствии с содержанием рабочей программы и календарно-тематическим применением фонда оценочных средств. Текущая аттестация обязательной, ее результаты оцениваются в балльной системе и по решению кафедры могут быть учтены при промежуточной аттестации обучающихся. Формой промежуточной аттестации знаний, умений и навыков обучающихся является зачет.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины . Учебно-методическое и информационное обеспечение дисциплины

а) основная литература:

№ п/п	Источник				
1.	Ремизов А.Н. Медицинская и биологическая физика : учеб. для вузов / А.Н. Ремизов. – ГЭОТАР-Медиа, 2016. – 656 с. – ЭБС «Консультант студента» - URL: http://www.studentlibrary.ru/book/ISBN9785970435779.html				

б) дополнительная литература:

Nº ⊓/⊓	Источник
2	Артюхов В.Г. Биологические мембраны: структурная организация, функции, модификация физико-химическими агентами: Учеб. пособие /В.Г. Артюхов, М.А. Наквасина Воронеж: Изд-во Воронеж. гос. ун-та, 2000 296 с. <url: <a="" href="http://www.lib.vsu.ru/elib/books/b27489.djvu">http://www.lib.vsu.ru/elib/books/b27489.djvu</url:>
3	Практикум по биофизике / [В.Г. Артюхов и др.] ; Воронеж. гос. ун-т ; [под общ. ред. В.Г. Артюхова] .— Воронеж : Издательский дом ВГУ, 2016 .— 313 с.

в) информационные электронно-образовательные ресурсы (официальные ресурсы интернет)*:

Nº	
	Pecypc
п/п	
4	Электронная библиотека ВУЗа. Режим доступа: http:// <u>www.lib.vsu.ru</u>
5	ЭБС "Консультант студента" : https://www.studentlibrary.ru
6	Онлайн-курс «Биофизика» ВГУ"https://edu.vsu.ru/course/view.php?id=9694

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1.	Башарина О.В. Биофизика : учебметод. пособие для студентов / О.В. Башарина, В.Г. Артюхов. — Воронеж : ИПЦ ВГУ, 2009. — 61 с.
2.	Башарина О. В. Спектральные и хроматографические методы анализа биосистем : учеб. материалы к большому практикуму / О. В. Башарина, В. Г. Артюхов Воронеж : Изд-во ВГУ, 2006 65 с. <url: elib="" http:="" method="" sep06135.pdf="" texts="" vsu="" www.lib.vsu.ru=""></url:>

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ), электронное обучение (ЭО), смешанное обучение):

Учебная дисциплина реализуется с использованием электронного обучения и дистанционных образовательных технологий. Онлайн-курс «Биофизика» *BГУ*"https://edu.vsu.ru/course/view.php?id=9694 в котором размещена учебная и научная литература по курсу, материалы для подготовки к текущим и промежуточной аттестации.

- 1. Чтение лекций с использованием слайд-презентаций.
- 2.Информационно-коммуникационные технологии (консультации преподавателя через тематические форумы и вебинары с использованием электронной информационно-образовательной среды ФГБОУ ВО "ВГУ" Образовательный портал «Электронный университет ВГУ» (www.moodle.vsu.ru).
 - 3. Информационные технологии (доступ в Интернет)
 - 4. ЭБС «Консультант студента» http://www.studmedlib.ru/
 - 5.3HБ ВГУ www.lib.vsu.ru

6. Консультант плюс – информационно-справочная система 7.ЭБС «Университетская библиотека online» https://biblioclub.ru/

18. Материально-техническое обеспечение дисциплины:

Наименование помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом, в том числе помещения для самостоятельной работы, с указанием перечня основного оборудования, учебнонаглядных пособий и используемого программного обеспечения	Адрес (местоположение) помещений для проведения всех видов учебной деятельности, предусмотренной учебным планом (в случае реализации образовательной программы в сетевой форме дополнительно указывается наименование организации, с которой заключен договор)
Учебная аудитория для проведения занятий лекционного типа, специализированная мебель, проектор Acer X115H DLP, экран для проектора, ноутбук Lenovo G580 с возможностью подключения к сети «Интернет»	394018, г.Воронеж, площадь Университетская, д.1.
Учебная аудитория для проведения лабораторных занятий, текущего контроля и промежуточной аттестации, специализированная мебель, рН-метр портативный HI83141; дистиллятор, 4 л/ч, нержавеющая сталь без бака накопителя, Liston; дозиметр-радиометр МКГ-01-10/10; микроскоп МБС - 10; микроскоп медицинский БИОМЕД исполнение БИОМЕД 2; рНметр карманный, короткий электрод; спектрофометр ПромЭкоЛаб ПЭ-5400УФ; вискозиметр	394018, г.Воронеж, площадь Университетская, д.1.
Лаборатория теоретической биофизики (для проведения занятий семинарского типа, текущего контроля и промежуточной аттестации), Специализированная мебель, проектор SANYO PLS-SL20, экран для проектора, ноутбук ASUS V6800V с возможностью подключения к сети «Интернет»	394018, г.Воронеж, площадь Университетская, д.1.
Помещение для самостоятельной работы с возможностью подключения к сети «Интернет»: Специализированная мебель, компьютеры (системный блок Pentium Dual Core CPU E6500, монитор LG Flatron L1742 (17 шт.) ПО OfficeSTD 2013 RUS OLP NL Acdmc.	394018, г.Воронеж, площадь Университетская, д.1.

19. Оценочные средства для проведения текущей и промежуточной аттестаций

Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

Код и содержание компетенции (или ее части)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенции посредством формирования знаний, умений, навыков)	Этапы формирования компетенции (разделы (темы) дисциплины или модуля и их наименование)	ФОС* (средства оценивания)		
ОПК-1.2. Применяет основные физико- химические и химические методы анализа для разработки, исследований и экспертизы лекарственных средств, лекарственного растительного сырья	Знать: биологическую и биофизическую терминологию, биофизические понятия, теоретические основы биофизики, общие молекулярные механизмы взаимодействий, лежащие в основе биологических (в т.ч. физиологических) процессов и явлений, принципы биофизических методов исследования	Все разделы	Устный опрос, комплект КИМ к промежуточ ной аттестации		
и биологических объектов	Уметь: использовать фундаментальные биофизические представления в сфере профессиональной деятельности для решения новых задач; применять биофизические методы анализа для оценки качества лекарственных препаратов	Темы: 2. Молекулярная биофизика. 3. Биофизика мембран. Структура и функции биологических мембран. 4. Квантовая биофизика. Оптические методы анализа биосистем. Фотобиология. 6. Радиационная биофизика.	Отчеты студентов по выполнению лабораторн ых работ, решение задач		
	владеть (иметь навык(и)): основными методами биофизического анализа, методами самостоятельной постановки экспериментов, способностью к анализу и оценке достоверности полученного результата.	Темы: 2. Молекулярная биофизика. 3. Биофизика мембран. Структура и функции биологических мембран. 4. Квантовая биофизика. Оптические методы анализа биосистем. Фотобиология. 6. Радиационная биофизика.	Отчеты студентов по выполнению лабораторн ых работ		
Промежуточная аттестация					

20 Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1 Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Перечень вопросов к текущей аттестации

- 1. Дайте определение биофизики как науки.
- 2. Перечислите основные разделы биофизики.
- 3. Что является целью биофизики как науки?

- 4. В чем состоит связь биофизики и фармации?
- 5. Что является мономером белка? Напишите структурную формулу мономера.
 - 6. Какими связями поддерживается структура белковой молекулы?
 - 7. Охарактеризуйте пептидную связь.
- 8. Охарактеризуйте типы вторичной структуры белка. Какими связями она поддерживается?
 - 9. Физические свойства белковой молекулы.
 - 10. Опишите механизм возникновения гидрофобных взаимодействий.
- 11. Что представляет собой домен белковой молекулы? Чем доменная структура отличается от четвертичной структуры?
 - 12. Что такое фолдинг белка?
 - 13. Что собой представляет денатурация белка? Виды денатурации.
- Что является мономером нуклеиновой кислоты? Напишите структурную формулу.
- 15. Какие связи поддерживают первичную структуру нуклеиновых кислот.
 - 16. Охарактеризуйте структуру ДНК.
 - 17. Типы РНК в клетке и их структура.
 - 18. Что собой представляет современная модель мембраны?
 - 19. Нарисуйте и поясните схему строения мембраны.
 - 20. Какие функции выполняют мембранные белки?
 - 21. Классификация мембранных белков по их положению в мембране.
 - 22. В каком фазовом состоянии находятся липиды биомембран?
 - 23. Какие основные классы липидов мембран вы знаете?
 - 24. Какие типы перемещения молекул возможны в биомембране?
- 25. При понижении температуры в липидах мембраны происходит фазовый переход I рода. Как при этом изменится толщина мембраны? Ответ поясните.
 - 26. Что собой представляет пероксидное окисление липидов мембран?
- 27. Как изменяется вязкость мембран при воспалительных процессах? Ответ поясните.
 - 28. Что собой представляют липосомы?
- 29. Для чего используют липосомы при изготовлении некоторых лекарств?
 - 30. Какие виды мембранного транспорта вы знаете? Ответ поясните.
 - 31. Что такое антипорт? Приведите примеры.
 - 32. Что такое симпорт? Приведите примеры.
- 33. Какие виды облегченной диффузии вы знаете? Приведите примеры.
 - 34. Отличия облегченной диффузии от простой.
 - 35. Какие типы ионных каналов вы знаете?
 - 36. Структура ионных каналов.
 - 37. Что такое ионофоры? Приведите примеры.
 - 38. Уравнение Теорелла для пассивного мембранного транспорта.
 - 39. Закон Фика (для пассивного транспорта незаряженных частиц)
- 40. Почему при транспорте глюкозы в клетки эпителия кишечника против градиента концентрации энергия не затрачивается? Как называется такой транспорт?
 - 41. Какие типы активного транспорта вы знаете? Ответ поясните.
 - 42. Какие типы ионных насосов вы знаете?
 - 43. Что собой представляют ионные насосы?

- 44. Что такое мембранный потенциал? Виды мембранных потенциалов.
- 45. Какие ионы являются определяющими при формировании потенциала покоя? Охарактеризуйте соотношение проницаемости мембраны для ионов в состоянии покоя.
- 46. Охарактеризуйте соотношение проницаемости мембраны для ионов в состоянии возбуждения. Какие ионы являются определяющими при формировании потенциала действия?
- 47. Куда направлен ток ионов натрия в І фазе (деполяризации) потенциала действия? Ток ионов натрия в І фазе потенциала действия является активным или пассивным? Как он осуществляется через мембрану?
 - 48. Уравнение Томаса.
 - 49. Уравнение Гольдмана Ходжкина Каца.
 - 50. Свойства потенциала действия
 - 51. Рецепторы ионные каналы.
 - 52. Рецепторы, ассоциированные с G-белками.
 - 53. Рецепторы, ассоциированные с ферментативной активностью

Перечень практических заданий

- 1. Построить спектр поглощения раствора сывороточного альбумина, охарактеризовать спектральные свойства данного белка.
- 2. Охарактеризовать спектральные свойства однокомпонентного белка; используя литературные данные, объяснить, какими электронными переходами обусловлены максимумы поглощения альбумина.
- 3. Построить спектр поглощения раствора оксигемоглобина, охарактеризовать его спектральные свойства.
- 4. Охарактеризовать спектральные свойства оксигемоглобина; используя литературные данные, объяснить, какими электронными переходами обусловлены данные максимумы.
- 5. Исследовать спектральные свойства термомодифицированных растворов сывороточного альбумина.
- 6. Сделать выводы о влиянии температуры (термоденатурации) на структурные свойства белков.
- 7. Определить концентрацию заданного вещества в растворе с помощью градуировочной прямой
- 8. Сделать выводы о спектральных свойствах некоторых лекарственных препаратов; о возможности применения закона Бугера Ламберта Бера для определения концентрации данных веществ в растворе.
- 9. Определить величины относительной, удельной и приведенной вязкости растворов некоторых неорганических солей.
- 10. Выявить зависимость вязкости растворов сахарозы от их концентрации. Сделать заключение о причинах изменения вязкости растворов сахарозы.
- 11. Определить величины относительной, удельной, приведенной и характеристической вязкости растворов белков.
- 12. Исследовать относительную вязкость плазмы и сыворотки крови человека. Сравнить величины $\eta_{\text{отн}}$ для плазмы и сыворотки, сделать заключение.
- 13. Что представляют собой реологические кривые? Какую информацию позволяют получить реологические кривые?
 - 14. Какие факторы оказывают влияние на вязкость крови?

- 15. Опишите суть различных методов определения вязкости.
- 16. Какое значение имеют биореологические исследования в биологии и медицине?
 - 17. Определить радиоактивность препарата с заданной степенью точности.
- 18. Установить зависимость радиоактивности и мощности дозы препарата от расстояния до счетной трубки.
- 19. Исследовать способность β-частиц проникать через различные материалы.
- 20. В каких дозах оценивают действие ионизирующего излучения на вещество?
- 21. Какую опасность для человека несет выброс различных радиоактивных изотопов в атмосферу? Одинаково ли действие их на организм?
- 22. Какие основные показатели определяют степень воздействия радиоактивных изотопов на организм?

Описание технологии проведения:

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: устного опроса (индивидуальный опрос, фронтальная беседа, отчеты о выполнении лабораторных работ); письменных работ (контрольная по КИМам к текущей аттестации, лабораторные работы). Критерии оценивания приведены выше.

20.2 Промежуточная аттестация

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств:

Собеседование по экзаменационным билетам

Перечень вопросов к зачету

- 1. Предмет и задачи биофизики. Значение биофизики для медицины и фармации.
 - 2. История развития биофизики.
 - 3. Проблемы современной биофизики.
 - 4. Уровни структурной организации белков.
 - 5. Понятие о фолдинге белков.
 - 6. Денатурация белков.
 - 7. Биофизика белка. Динамические свойства белков.
 - 8. Особенности пространственной организации нуклеиновых кислот.
 - 9. Модель ДНК Уотсона-Крика.
- 10. Структура и функции биологических мембран. Современная модель биомембраны.
 - 11. Мембранные липиды, их структура, свойства и особенности.
 - 12. Принципы организации липидного бислоя в мембране.
 - 13. Мембранные белки, их структура, свойства и особенности.
 - 14. Динамика структурных элементов биомембраны.
 - 15. Фазовые переходы, микровязкость липидного бислоя.
- 16. Влияние физико-химических факторов на физические свойства и функции биомембран.
 - 17. Мембранные липиды, их основные классы.

- 18. Пероксидное окисление липидов, его значение в норме и при патологии.
- 19. Модельные липидные мембраны, их строение, способы приготовления, перспективы применения в фармации и медицине.
- 20. Транспорт веществ через биологические мембраны. Активный и пассивный транспорт. Унипорт и симпорт.
- 21. Пассивный транспорт веществ через биомембрану. Уравнения Теорелла, Нернста-Планка, Фика.
 - 22. Виды пассивного транспорта веществ через биомембрану.
 - 23. Простая и облегченная диффузия.
 - 24. Ионные каналы: механизм работы, селективность.
 - 25. Активный транспорт. Ионные насосы, молекулярный механизм их работы.
 - 26. Классификация электрических потенциалов биосистем.
- 27. Механизм формирования потенциала покоя. Уравнения Нернста, Гольдмана, Томаса.
- 28. Механизм формирования потенциала действия (возбуждения). Уравнения Нернста, Гольдмана, Томаса.
 - 29. Свойства потенциала действия, его фазы.
 - 30. Виды мембранных рецепторов. Механизм передачи сигнала в клетку.
 - 31. Рецепторы-ионные каналы.
 - 32. Метаботропные мембранные рецепторы.
 - 33. Свойства клеточных рецепторов.
 - 34. Квантовая биофизика. Ее цели и задачи, связь с медициной и фармацией.
 - 35. Энергетические уровни молекул.
 - 36. Краткая характеристика излучений оптического диапазона.
- 37. Природа взаимодействия квантов различных диапазонов электромагнитного излучения с веществом
- 38. Электронные переходы при поглощении света в биомолекулах., условия поглощения света.
 - 39. Способы дезактивации возбужденных состояний молекул.
- 40. Схема поглощательных и дезактивационных переходов в молекулах (схема Яблонского).
 - 41. Понятие об оптической плотности, светопропускании и светопоглощении.
- 42. Качественные и количественные показатели поглощения света. Закон Бугера Ламберта Бера, отклонения от него. Применение закона для определения концентрации вещества в растворе.
- 43. Молярный и удельный коэффициенты поглощения, их применение для определения концентрации веществ.
- 44. Спектр поглощения. Параметры, используемые для характеристики спектров поглощения.
- 45. Спектры поглощения биомолекул (на примере белков и нуклеиновых кислот). Хромофоры. Связь спектров поглощения со структурой макромолекул.
- 46. Люминесценция. Виды люминесценции. Применение люминесцентного анализа в биологии и фармации.
 - 47. Люминесценция. Правило Каши и закон Вавилова.
 - 48. Люминесценция. Закон Стокса.
- 49. Фотобиологические процессы. Основные стадии фотобиологического процесса.
 - 50. Спектральные методы анализа. Общие принципы спектроскопии.
- 51. Методы оптической молекулярной спектрофотометрии (абсорбционный фотометрический анализ, фотонефелометрия, флуориметрия).
- 52. Принцип действия спектрофотометра, его основные функциональные блоки.
 - 53. Флуоресцентные методы исследования, флуоресцентные метки и зонды.

- 54. Преломление света и рефрактометрические свойства растворов. Понятие рефракции, виды рефракции.
 - 55. Принцип действия рефрактометра.
 - 56. Связь показателя преломления с концентрацией вещества.
- 57. Вискозиметрия, ее применение в биологии и медицине. Принцип действия капиллярного вискозиметра.
- 58. Понятие вязкости, характеристика различных видов вязкости. Построение калибровочного графика.
 - 59. Реология. Закон Ньютона, ньютоновские и неньютоновские жидкости.
 - 60. Вязкость крови.
 - 61. Радиоактивность, виды радиоактивных излучений.
- 62. Использование радиометрического метода для определения радиоактивности вещества. Применение радионуклидов в биологии, медицине и фармации.
- 63. Метод меченых атомов. Использование радиометрического метода для определения активности радионуклидов.
- 64. Фоторецепция. Зрительные пигменты фоторецепторной мембраны палочек и колбочек. Механизмы генерации рецепторного потенциала.
- 65. Кинетика биологических процессов. Основные понятия. Отличия биологической кинетики от химической. Факторы, влияющие на скорость химических реакций.
- 66. Влияние температуры на скорость биохимической реакции. Энергия активации реакции. Влияние рН субстрата на скорость ферментативной реакции
- 67. Влияние катализаторов на скорость реакции. Физико-химические механизмы ферментативного катализа. Определение констант скоростей ферментативной реакции.
- 68. Физический смысл параметров уравнения Михаэлиса (Km, Vmax). Значение параметра kcat/Km. Порядок величин. Методы их определения. Графическое представление данных.
- 69. Влияние активаторов и других факторов микроокружения на скорость ферментативной реакции. Ингибиторный анализ. Методы описания и определения констант ингибирования.
- 70. Типы ингибирования. Графические методы определения кинетических параметров реакции в присутствии ингибитора.
- 71. Термодинамика биологических процессов. Классификация термодинамических систем.
- 72. І начало термодинамики. Приложение І начала термодинамики к биологическим системам. Энтальпия. Закон Гесса.
- 73. II начало термодинамики. Приложение II начала термодинамики к биологическим системам.
- 74. Организм как открытая термодинамическая система. Уравнение Пригожина для открытой системы.
 - 75. Стационарное состояние и термодинамическое равновесие.
 - 76. Решение задач по теме «Рефрактометрия».
 - 77. Решение задач по теме «Вискозиметрия».
 - 78. Решение задач по теме «Спектрофотометрия».
 - 79. Решение задач по теме «Радиоактивность, закон радиоактивного распада».
 - 80. Решение задач по теме «Кинетика ферментативных реакций».

Описание технологии проведения: Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Оценка результатов обучения на промежуточной аттестации происходит по следующим показателям:

- 1. Знание учебного материала и владение понятийным аппаратом дисциплины «Биофизика».
- 2. Способность иллюстрировать ответ примерами, фактами, данными научных исследований, применять теоретические знания для решения практических задач.
- 3. Умение связывать теоретические знания с практическими навыками.
- 4. Умение устанавливать междисциплинарные связи.

Соотношение показателей, критериев и шкалы оценивания результатов обучения

от пошение пенасателен, притериев и шналы едениван	Уровень	,
Критерии оценивания компетенций	сформированно	Шкала
	СТИ	оценок
	компетенций	
Ответ студента полностью соответствует всем оцениваемым	Повышенный	Зачтено
показателям. Компетенции сформированы полностью и	уровень	
используются в полном объеме.		
Ответ студента не полностью соответствует всем	Базовый	Зачтено
оцениваемым показателям, компетенции сформированы и	уровень	
проявляются фрагментарно и не в полном объеме. При ответе		
студент допускает незначительные ошибки и неточности,		
которые устраняются им самостоятельно.		
Ответ студента не в полной мере соответствует оцениваемым	Пороговый	Зачтено
показателям. Компетенции сформированы в общих чертах, при	уровень	
ответе обучающийся допускает существенные ошибки и		
неточности, демонстрирует поверхностные знания		
дисциплины, не способен сочетать теоретические знания и		
практические умения и навыки.		
Ответ на контрольно-измерительный материал не	_	He
соответствует любым трем из перечисленных показателей.		зачтено
Компетенции не сформированы. Знания студента не		
систематизированы, он допускает грубые профессиональные		
ошибки, не способен переносить теоретические знания на		
практику, устанавливать междисциплинарные связи.		

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практическое задание, позволяющее оценить степень сформированности умений и навыков.

При оценивании используются качественные шкалы оценок. Критерии оценивания приведены выше.